Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Journal of Medical Biomechanics ; (6): E096-E101, 2021.
Article in Chinese | WPRIM | ID: wpr-904371

ABSTRACT

Objective To establish the three-dimensional (3D) statistical shape model (SSM) of the foot, so as to reveal the 3D foot shape variations. Methods Foot data from 50 normal Chinese young males were used for 3D statistical shape modelling. Steps, including mesh registration of foot surface, axis alignment and principal component (PC) analysis (dimension reduction), were performed to obtain the parameterized foot shape (mean shape and standard deviation of PC). Results Through the principal component analysis (PCA), the 3D foot shape varied in the length and width (PC1, 48.01%), arch and dorsal height (PC2, 11.38%), and hallux abduction-adduction position (PC3, 7.48%). Conclusions Based on the parameterised 3D foot SSM, these datasets can be applied into the population-based shoe last manufacture, orthotics customization and quick diagnosis of foot disorders in clinic.

2.
Journal of Medical Biomechanics ; (6): E259-E264, 2020.
Article in Chinese | WPRIM | ID: wpr-862322

ABSTRACT

OpenSim musculoskeletal modelling has developed rapidly and been widely utilized due to its open-source. Apart from calculation of the basic kinematic and kinetic data, subject-specific OpenSim model could reveal information of neuromuscular control, muscle forces and geometry, and contact forces. Image-based model-ling of the neuromuscular control in pathological gait and ergonomic evaluation of the prostheses confirmed the reliability and feasibility, but limitations in time-consumption and foot-ankle modelling also existed. The subject-specific modelling of pathological gait could improve the accuracy and diversity of clinical biomechanics and medical engineering research. It could also reveal the pathological features, and provide scientific evidence to design specific and accurate protocols of motor function diagnosis and rehabilitation, health monitoring and evaluation, and ergonomic customization and assessment of devices, as well as future directions and implications in the research field.

SELECTION OF CITATIONS
SEARCH DETAIL